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Abstract. Many recent studies indicate climate change as a phenomenon that significantly alters the water cycle in different 

regions worldwide, also implying new challenges in water resources management and drought risk assessment. To this end, it 

is of key importance to ascertain the quality of Regional Climate Models (RCMs), which are commonly used for assessing at 

proper spatial resolutions future impacts of climate change on hydrological events. In this study, we propose a statistical 15 

methodological framework to assess the quality of the EURO-CORDEX RCMs concerning their ability to simulate historic 

climate (temperature and precipitation) and drought characteristics (duration, accumulated deficit, and intensity) determined 

by the theory of runs, at seasonal and annual time scales, by comparison with high-density and high-quality ground-based 

observational datasets. In particular, the proposed methodology is applied to Sicily and Calabria regions (Southern Italy), 

where long historical precipitation and temperature series were recorded by the ground-based monitoring networks operated 20 

by the formerly Regional Hydrographic Offices, whose density is considerably greater than observational gridded datasets 

available at the European level, such as E-OBS. Results show that the more skilful models, able to reproduce, overall, 

precipitation and temperature variability, as well as drought characteristics, are based on the COSMO-CLM RCM, with the 

significant exception of the combination based on the HadGEM2-ES GCM and the RACMO RCM. Nevertheless, the choice 

of the most appropriate model depends on the specific variable analysed, as well as the temporal and spatial scale of interest. 25 

From this point of view, the proposed methodology highlights the skills and weaknesses of the different configurations, 

supporting a proper model selection for climate projections depending on the examined hydrologic processes.   

1 Introduction 

A growing number of scientific studies claims that climate change due to global warming will significantly alter the water 

cycle, with an increase of the intensity and frequency of extreme hydro-climatic events in several areas around the globe 30 

(Arnell et al., 2001; Huntington, 2006; IPCC, 2014; IPCC, 2018). These include the Mediterranean region, which is recognized 
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as one of the major hot spots of climate change due to future projections of temperature increase and annual precipitation 

decrease (Giorgi, 2006; Kjellström et al., 2013).  

Global Circulation and Regional Climate Models (GCMs and RCMs) can play a crucial role in understanding the potential 

spatiotemporal evolution of climate change in the future, thus improving current monitoring and planning tools (e.g., 35 

Mendicino and Versace, 2007; Hart and Halden, 2019) and supporting decision-makers to choose and implement the best 

solutions to minimize the impact of climate change on human systems and the environment at the regional scale. While GCMs’ 

simulations describe climate evolution at large scale, by using coarse resolution information, RCMs simulations, derived 

through climate-downscaling techniques, aim at representing regional and local scale weather conditions with grid resolutions 

lower than 50 km down to about 10 km (Kotlarski et al., 2014; Peres et al., 2019).  40 

Several studies, focused on the use of climate models to simulate future climate scenarios for hydrological analyses, have 

shown that changes in temperature and precipitation vary in space depending on the future climate scenario, type, and 

resolution of the models, as well as on spatial heterogeneity of climatic features. This is particularly evident in the 

Mediterranean region where, for instance, precipitation is partially controlled by orography, shows strong seasonality and large 

interannual fluctuations, and is characterized by the occurrence of extremes, such as prolonged droughts and high-intensity 45 

storms leading to floods.  

Recently, there is a growing interest in the implementation of RCMs derived by dynamical downscaling of GCM outputs for 

climate change impact studies at small spatial scales. These are high-resolution models able to provide a more realistic 

representation of important surface heterogeneities (such as topography, coastlines, and land surface characteristics) and 

mesoscale atmospheric processes.  50 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative is the first international program providing 

a common framework to simulate both historical and future climate at the regional level, under different Representative 

Concentration Pathways (RCPs) (van Vuuren et al., 2011), and over different domains which cover all the land areas. More 

specifically, it provides climate data simulated by an ensemble of RCMs developed by several research centres all over the 

world which are forced by Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project phase 5 55 

(CMIP5) (Taylor et al., 2012). In the present study, we refer to the CORDEX domain centred on the Euro-Mediterranean area, 

known as EURO-CORDEX (Jacob et al., 2014) (www.euro-cordex.net). In particular, EURO-CORDEX provides simulations 

for a historic reference period (baseline) and future projections up to 2100, with a 12.5 km grid resolution, available for four 

RCPs defined at the international level within the Coupled Model Intercomparison Project – Phase 5 (CMIP 5). 

The reliability of individual RCMs in representing climate effects on the hydrological cycle depends on the quality of 60 

simulations and must be evaluated before using their output for impact assessment. Assessing RCMs performance is essential 

to either select single models for further applications (e.g., Senatore et al., 2011; Peres et al., 2017; Smiatek and Kunstmann, 

2019) or properly weight individual RCMs in multi-model ensembles to predict future impacts of climate change on 

hydrological processes (e.g., Christensen et al., 2010; Coppola et al., 2010). Indeed, intercomparison and validation studies to 

evaluate RCMs’ performances and to provide a ranking based on some hydrological measures, have demonstrated that no 65 
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model can be considered optimal for every variable and region. Table 1 provides a broad, although not thorough, list of 

intercomparison studies within the CORDEX framework available in the literature. Overall, these studies show that CORDEX 

RCMs can reproduce the most important climatic features at regional scales, but that important biases remain, especially 

regarding precipitation or climate extremes. As reported by Kotlarski et al. (2014) and references therein, model biases may 

depend on the analysed region, choices in model configuration, internal variability, and uncertainties of the observational 70 

reference data themselves (Gampe et al., 2019). Concerning the latter, a common approach in evaluation exercises consists in 

comparing models’ simulations to observational gridded datasets, from remote sensing or model-derived reanalyses products 

available at global or continental spatial scales.  

In general, statistical measures, such as bias, root mean square error, correlation, and trend analysis, are used to quantify model 

performance. Regardless of the specific methods used to assess the differences between simulated and observed data, one of 75 

the main limitations in this approach is that the considered spatial resolution is too coarse for reliable climate change impact 

studies at relevant hydrological scales, especially in areas of complex topography. From this point of view, large-scale 

observational gridded datasets are of poor applicability, since they are built upon low-density hydro-meteorological networks.  

In principle, more accurate evaluations can be achieved when they rely on gridded reference data sets that are obtained by 

spatial interpolation of point measurements onto a regular grid. To this end, two main prerequisites are that data coverage well 80 

reflects the topography and variables with limited spatiotemporal climatic variability are investigated (Wagner et al., 2007). 

For example, Mascaro et al. (2018) compared the skill of several EURO-CORDEX RCMs at ~ 50 and 12 km grid spatial 

resolution in reproducing annual and seasonal precipitation regimens and trends in Sardinia (Italy), against a dense network of 

rain gauges with long term records. Their analysis revealed that, although the simulated spatial patterns of annual and seasonal 

means are well correlated with the observations, positive and negative biases up to ±60% in the simulation of annual mean and 85 

interannual variability are detected. Furthermore, the majority of RCMs underestimate winter and overestimate summer 

precipitation. 

In this study, we propose a similar evaluation exercise on a different Mediterranean area with complex topography, namely 

Sicily and Calabria regions (Southern Italy), by investigating the ability of the EURO-CORDEX models to simulate the annual 

and seasonal temperature and precipitation regime, as well as drought events, here defined as consecutive intervals where the 90 

annual precipitation values are continuously below the long term mean, according to the theory of runs proposed by Yevjevich 

(1967).  Indeed, understanding how well the models can reproduce past droughts is crucial for future effective water resources 

management in the Mediterranean region. In particular, the performance of 19 coupled GCM and RCM simulations within the 

EURO-CORDEX framework are evaluated against a high-density and high-quality monitoring station-based reference dataset. 

Monthly temperature and precipitation records are retrieved by two monitoring networks, operated by the former Regional 95 

Hydrographic Services, whose density is significantly higher than observational datasets available at the European scale, such 

as E-OBS (Haylock et al., 2008) or CRU-TS (Harris et al., 2014). Beyond the intercomparison analysis of the EURO-CORDEX 

RCMs, the present study also aims at identifying potential sub-regions where model improvements are particularly advisable. 
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The study is organized as follows: after introducing the study area, the station-based reference dataset, and the GCM and RCM 

datasets in Section 2, Section 3 outlines the methodology applied for identifying climatically homogeneous zones in the study 100 

area through the Principal Component Analysis (PCA), and for evaluating models’ performance in both the whole study area 

and the homogeneous zones; furthermore, the adopted statistical performance metrics and the ranking criteria are introduced. 

Then, Section 4 presents the evaluation results for each investigated variable over the whole study area and the different zones. 

The results are further discussed in Section 5, highlighting the basic model capabilities identified, as well as the biases in 

modelling climate and drought conditions in Southern Italy. Conclusive remarks are drawn in Section 6, together with an 105 

outlook on future evaluation and prediction activities in the EURO-CORDEX framework. 

2 Study area and datasets 

Our analyses were focused on Calabria and Sicily regions in Southern Italy, which respectively have an extension of 15,080 

km² and 25,460 km², for a total area of 40,540 km² (Fig. 1). Climate is of Mediterranean type with hot and dry summers and 

moderately cold winters with peak monthly precipitation occurring mostly in late autumn and winter. About 75% of the total 110 

precipitation in the study area occurs from October to March, because of cyclonic storms. Climate features are also highly 

variable in space due to a rather complex orography. In particular, the mountain chains close to the coast enhance intense 

orographic precipitation and lead to relatively cold temperatures at the highest altitudes.  

2.1 Observed data  

Within the EURO-CORDEX control period (1951-2005), the comparison with observations was performed on the period from 115 

1971 to 2000. These three decades had the greatest availability of historical series of precipitation and temperature recorded 

by both the regional monitoring networks of Calabria and Sicily, managed by the Multirisk Operational Centre of Calabria 

region (ArpaCal) and the Water Observatory of Sicily region (WOS), respectively. Specifically, 84 thermometers (43 in Sicily 

and 41 in Calabria) and 335 rain gauges (173 in Sicily and 162 in Calabria and near the regional borders) were used (Fig. 1).  

The corresponding data were retrieved by the WOS (www.osservatorioacque.it) and the ArpaCal (www.cfdcalabria.it) 120 

websites. Observations were enough widespread to represent the quite heterogeneous features of the study area. The 

temperature stations were located between 2 and 1295 m a.s.l., with annual average values ranging from 9.2 °C to 20.6 °C 

(mean value = 16.2±2.4 °C), while the rain gauge elevations varied from 1 to 1369 m a.s.l., with annual accumulated values 

ranging from 373 mm to 1736 mm (mean value = 812±287 mm). 

2.2 Climate models 125 

Monthly precipitation and monthly mean air temperature data from the EURO-CORDEX CMIP5 simulations (Jacob et al. 

2014; https://www.euro-cordex.net/) were retrieved from the nodes of the Earth System Grid Federation (ESGF, e.g. 

https://esgf.llnl.gov).  
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We analysed the data at the finest resolution, 0.11° (~ 12.5 km), EUR-11 and considered the period 1971-2000 as a baseline. 

In particular, the combination of six GCMs (Tab. 2) and eight RCMs (Tab. 3) leading to 17 datasets, reported in Tab. 4, were 130 

collected for the study. Moreover, for two GCM-RCM combinations, two versions were available from the ESGF portal. 

Therefore, an overall ensemble of 19 combined models (CMs) was analysed. The ensemble mean of the 19 CMs was also 

evaluated. Even if the CMs have the same spatial resolution, each one is distributed on a specific grid (with slightly different 

origin and orientation of the axis). Therefore, the various data sets were resampled on the grid of the ECE-HIRH CM, which 

is shown in Fig. 1.   135 

We choose EUR-11 rather than EUR-44 simulations as several studies (Torma et al., 2015; Prein et al., 2016), have found that 

generally higher resolution CORDEX RCMs have better skills in simulating seasonal precipitation in regions with complex 

terrain. 

3 Methodology 

3.1 Data processing and PCA 140 

To allow the comparison between the spatially distributed RCMs data and site-specific observations, the latter were spatially 

interpolated using the CORDEX 0.11° grid as reference (Fig. 1). In this way, month by month, each cell of the CORDEX grid 

could be associated with a single temperature or precipitation value derived from the observations network. Specifically, 

concerning temperature, an Inverse Distance Weighting (IDW) interpolation was applied to the residuals of the values obtained 

using a regression model with the altitude. For precipitation, whose measurement network is much denser, a simple IDW 145 

interpolation was performed. As shown in Fig. 1, the CORDEX grid cells which are not covered by any rain gauge are relatively 

few (less than 30%) and, except one case, the distance of the closest rain gauge to every grid cell is always less than 10 km. 

The precipitation patterns obtained by the interpolation procedure were analyzed adopting a methodology based on the 

Principal Component Analysis (PCA) to distinguish zones with rather independent climatic variability within the area under 

investigation. PCA is a well-known statistical tool used to transform an original set of intercorrelated variables into a reduced 150 

number of new linearly uncorrelated ones explaining most of the total variance (Rencher, 1998). The latter, derived as linear 

combinations of the original variables, are the principal components (PCs), while the coefficients of the linear combinations 

are the loadings, which in turn represent the weight of the original variables in the PCs. From a procedural standpoint, PCA 

consists in solving an eigenvalue-eigenvector problem applied to the covariance matrix. The eigenvectors, properly 

normalized, are the loadings of the principal components, while the eigenvalues provide a measure of the total variance 155 

explained by each loading (Bordi and Sutera, 2001 and references therein). Under this decomposition, the loadings represent 

the correlation between the associated PCs and observed time series. Moreover, it may be useful to apply a rotation operation 

to the eigenvectors, so that the corresponding loadings are more spatially localized. In other words, the rotation leads to 

loadings with a high correlation with a smaller set of spatial variables and a low correlation with the remaining variables. Here, 
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only orthogonal rotations are considered, computed by the varimax algorithm in Matlab® R2016. Clearly, each rotated pattern 160 

will not explain the same variance of the unrotated one, although the total variance explained remains unchanged. 

In the present study, PCA led in dividing the whole area into six climatically homogenous zones, three for Sicily and three for 

Calabria (Fig. 1), for which separate performance assessments were carried out. Concerning Sicily region, the three identified 

sub-regions roughly coincide with the ones detected by Bonaccorso et al. (2003), who investigated the spatial variability of 

droughts in Sicily region based on SPI series computed on monthly precipitation observed in traditional rain gauges and on 165 

NCEP/NCAR reanalysis data from 1926 to 1996. In particular, three distinct areas, namely North-Eastern (identified in the 

PCA as zone 5, Fig. 1b), South-Central Eastern (zone 4), and Central-Western (zone 1), were identified. Also in Calabria, three 

main zones were determined, namely North-Western (zone 2), North-Eastern (zone 3) and South-Eastern (zone 6), broadly 

corresponding to climatic homogenous areas found in previous studies (e.g., Versace et al., 1989). Interestingly, the South-

Western tip of Calabria is identified as a part of a broader area (zone 5) extending over the North-Eastern Sicily. 170 

3.2 Performance metrics and models’ ranking 

The CMs were evaluated based on their performances in capturing specific properties, namely: the interannual and seasonal 

variability of precipitation, temperature and drought characteristics. Such properties were expressed based on some relevant 

statistics.  

Let 𝑋(𝑗) and 𝑋𝜏(𝑗) be the variable under investigation (precipitation or mean temperature) at grid cell j at the annual and 175 

seasonal scale, respectively. For precipitation and mean air temperature, the following statistics were derived for each CM and 

cell in the area of interest:  

• Seasonal mean 𝜇𝑚(𝑋𝜏(𝑗)) =
∑ 𝑥𝜏,𝑖,𝑚(𝑗)𝑁

𝑖=1

𝑁
 

where 𝑥𝜏,𝑖,𝑚(𝑗) is the value of the variable at season 𝜏 (𝜏 = 1, 2, 3, 4) and year 𝑖 (𝑖 = 1, 2, … 𝑁) produced by the 𝑚-

th CM (𝑚 = 1, 2, … 𝑀) at cell grid j. Seasons are December – February (DJF), March – May (MAM), June – August 180 

(JJA), and September – November (SON); 

• Seasonal standard deviation 𝜎𝑚 (𝑋𝜏(𝑗)) = √∑ (𝑥𝜏,𝑖,𝑚(𝑗)−𝜇𝑚(𝑋𝜏(𝑗)))
2

𝑁
𝑖=1

𝑁−1
; 

• Annual mean 𝜇𝑚(𝑋(𝑗)) =
∑ 𝑋𝑖,𝑚(𝑗)𝑁

𝑖=1

𝑁
; 

where 𝑥𝑖,𝑚 is the value of the variable at year 𝑖 (𝑖=1, 2, … N) produced by 𝑚-th CM; 

• Annual standard deviation 𝜎𝑚 (𝑋(𝑗)) = √∑ (𝑥𝑖,𝑚(𝑗)−𝜇𝑚(𝑋(𝑗)))
2

𝑁
𝑖=1

𝑁−1
. 185 

Drought events were identified on annual precipitation values simulated for the period 1971-2000, according to the theory of 

runs (Yevjevich, 1967). In particular, drought events were selected as the periods during which consecutive annual values of 

precipitation did not exceed a given threshold, here assumed equal to the long term mean. For further details about the theory 
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of runs, the readers may refer to Bonaccorso et al. (2003, 2013) and reference therein. Once drought events were identified, 

the corresponding drought characteristics in each cell were determined. In particular, the following statistics for drought 190 

characteristics are considered hereafter to assess the models’ performance: 

• Maximum drought duration Lmax: maximum length of periods with consecutive annual precipitation values below the 

threshold; 

• Maximum drought accumulated deficit Dmax: maximum of the sums of the differences between the threshold and the 

precipitation values along with the drought duration.  195 

• Maximum drought intensity Imax: maximum of the ratio between drought accumulated deficit and duration. 

Models’ skills in reproducing the interannual and seasonal variability of precipitation and mean air temperature variables were 

first assessed through: 

• boxplots of the errors and percentage errors of the mean values in all the grid cells of the investigated areas, which 

allow analysing the spatial variability of the models’ bias; 200 

• Taylor diagrams (Taylor, 2001), which show three metrics at the same time, i.e.: coefficient of correlation, standard 

deviation, and centred root mean square error of the anomalies (i.e., the variables of interest minus the corresponding 

means). It is noteworthy that standard Taylor diagrams do not provide any information about first-order statistics (i.e., 

bias). 

Later, to provide synthetic information about each CM starting from the various statistics computed for each property, a method 205 

based on Mascaro et al. (2018) was used. Specifically, for each property (i.e. seasonal and interannual variability of 

precipitation and mean temperature and drought characteristics), a single dimensionless error metric that combines multiple 

statistics characterizing that property was estimated. The error metrics follows the equation: 

𝜀𝑚 = √∑ (
∑ 𝐸𝑘,𝑚(𝑗)

∑ ∑ 𝐸𝑘,𝑚(𝑗)𝑃
𝑗=1

𝑀
𝑚=1

)
2

𝑆
𝑘=1  (1) 

where 𝐸𝑘,𝑚(𝑗) represents an error metric between observed and simulated data of the statistics k (k = 1,…, S) at grid cell j 210 

(j=1, … P, where P is the total number of grid cells), whose sum over the whole area was divided by the sum of the error 

metrics of all models, therefore resulting in a dimensionless indicator for each statistic k of any property. Table 5 summarizes 

the statistics chosen for each property and describes how the corresponding errors were calculated.  

Based on the values of the error metrics in Eq. (1), a ranking of the models, describing the skills in reproducing each property, 

was obtained. It should be specified that while, for the sake of brevity, the boxplots and the Taylor diagrams illustrated in the 215 

next section refer to the whole study area, the ranking of the models for the mean air temperature, precipitation and drought 

characteristics also refers to the six climatically homogenous zones identified through PCA. This analysis, indeed, can help to 

highlight whether some models are more suitable than others to simulate certain variables in a given zone. 
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4 Results  

In this section, results are presented and discussed separately for temperature, precipitation and drought characteristics. Results 220 

are differentiated for the following temporal and spatial aggregation scales: annual data, seasonal data, the whole case study 

region and the six climatically homogenous areas identified via PCA.  

4.1 Mean air temperature 

4.1.1 Interannual variability 

The observed and modelled means of the annual mean air temperature values in each of the grid cells within the study area 225 

were calculated and compared. More specifically, for each cell j, the error corresponding to the m-th CM was computed as:  

𝐸𝑚,𝑗 = 𝜇𝑚(𝑇(𝑗)) − 𝜇0(𝑇(𝑗)) (2) 

where T(j) is the mean annual temperature at cell j, whereas 𝜇𝑚(∙)  and 𝜇0(∙) are the modelled and observed means respectively. 

For each model, the distribution of the errors computed for all the grid cells of the study area based on Eq. (2), is represented 

in the form of box-plots in Fig. 2. In particular, the central line represents the median value and the box is delimited by the 230 

first and the third quartile. The width of the box corresponds to the inter-quartile range (IQR), a well-known measure of 

dispersion. Values outside the whiskers, distant from the box at least 1.5 IQR, can be assumed as outliers.  

The overall tendency of the models is to underestimate temperatures, as the medians are negative. Errors are predominantly 

comprised between the values -5 and -1 °C, thus implying that the models underestimate up to 5 °C. The CMs that produce 

the most extreme negative errors are the ECE-RACM, ECE-RACMr12 and CM5-ALAD, with the latter showing the broader 235 

IQR (e.g. the highest spatial variability of the errors) and the greatest median error. All the CMs with RCA4 show the smallest 

IQR. The models with the smallest median error are MPI-REMO and MPI-REMOr2. 

To extend the CM skill comparison to other statistics, the Taylor diagram for the annual mean air temperature values was 

developed (Fig. 3). For the sake of simplicity, standard deviations of the CMs are indicated as  hereinafter. The diagram 

allows visualizing if there are clusters of performances related to specific GCMs or RCMs among those considered. In the 240 

diagram, GCMs are indicated with different markers, while RCMs with different colors. The value corresponding to the 

observations is the dot on the x-axis, whose standard deviation is marked through a continuous circular arc. In addition to every 

single model, the ensemble mean model result is reported in the diagram.  

From Fig. 3, it can be seen that the simulated means are well correlated with the observations, with values larger than 0.8 for 

all the considered models. Furthermore, the diagram seems to reveal that, on equal GCMs, RCMs play a significant role in 245 

determining the performance of the combinations. In general, for most of the models, the best performances are obtained when 

the RCM RCA4 is used. The only exception is CM5, performing better in combination with CCLM. The worst models are 

CM5-ALAD and IPS-WRF. 
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Finally, the ranking analysis described in Section 3.2 yields the results in Fig. 4. The lower the rank, the lower is the error 

metrics in Eq. (1) and the better is the model. For better readability, ranking values are indicated through a chromatic scale, 250 

ranging from dark green (first ranked model) to dark red (last ranked model). 

The best performing models, in terms of ranking order for the whole study area, are MPI-CCLM, MPI-REMO, and Had-

CCLM. ECE-RCA4 and CM5-CCLM are also good models as highlighted by the Taylor diagrams. Figure 4 also shows 

rankings for each of the six homogeneous areas. As it can be observed, based on the range of colours in each row, MPI-CCLM 

and MPI-REMO provide the best performance for almost all the zones.  255 

Indeed, some differences exist for Zones 3 and 6 (North and South-Eastern Calabria), whose best CM is IPS-RCA4. Overall, 

results show that the worst model is CM5-ALAD for entity and dispersion of errors, lower correlations, higher RMSE, greater 

deviation from the standard deviation of the observed values, both for the whole study area and individual zones. ECE-RACM, 

ECE-RCMOr12, and ECE-RCA4 also show bad performance (the latter mainly because of its relatively strong bias).  

4.1.2 Seasonal variability  260 

For the sake of brevity, the box-plots related to the seasonal variability of mean air temperature are not shown since they 

provide similar results to the case of annual variability. 

Figure 5 shows the Taylor diagrams obtained from the analysis of the individual seasons. CM5-ALAD and IPS-WRF (and, to 

a slightly lesser extent, CM5-ALAR) appear as the worst models regardless of the season, although in summer (JJA) the worst-

performing models are MPI-REMO and MPI-REMOr2. Summer is also the season with the (slightly) lowest values of 265 

correlation coefficients. 

Regarding the best models, in general, all the combinations with RCA4 and the CM5-CCLM work better, as for the interannual 

variability analysis. However, in summer better performances are obtained with ECE-RACM and ECE-RACMr12. 

Figure 6 represents the rankings of the models for the individual seasons and all the study areas, namely the whole case study 

and the six zones. There is a certain correspondence on the least performing models between Figs. 5 and 6. Nonetheless, 270 

differently from the results in Fig. 4, models’ performances may change significantly from season to season and, in the same 

season, from zone to zone. The best models for most of the zones are ECE-HIRH in winter (DJF), ECE-CCLM in spring 

(MAM), IPS-RCA4 in summer (JJA) and MPI-REMOr2 in autumn (SON). It’s worth highlighting that the latter provides the 

best performances also for Zones 2 and 4 in spring and Zones 5 and 6 in summer. Conversely, ECE-HIRH, which is the best 

model in winter, works poorly in summer and autumn. The Zones 1 (Western Sicily) and 2 (Western Calabria) show a uniform 275 

behaviour in all seasons, with the only exception of spring, while Zones 5 (North-Eastern Sicily) and 6 (South-Eastern 

Calabria) show a uniform behaviour in all seasons but autumn. Besides, in summer and autumn, the best performing models 

for Zones 1, 2 and 4 (South-Eastern Sicily) are the same as for the whole study area. Zone 3 (North-Eastern Calabria) behaves 

like Zone 4 in winter and like Zones 1, 5 and 6 in spring. 
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4.2 Precipitation  280 

4.2.1 Interannual variability  

Figure 7 shows box-plots for the percentage errors in mean annual precipitation, namely: 

𝐸𝑚,𝑗 =
𝜇𝑚(𝑃(𝑗))−𝜇0(𝑃(𝑗))

𝜇0(𝑃(𝑗))
⋅ 100 (3) 

where P(j) is the total annual precipitation at the grid cell j. 

In comparison to temperature, the errors are much larger, as well as the differences between the various models. There is a 285 

general tendency for the models to underestimate the total annual precipitation, except for some models like IPS-WRF, which 

also shows the largest IQR. The median value of the relative errors for some models is less than 20%; however, many models 

have a large dispersion with error values over 100%. The CM with the highest positive error is IPS-WRF, while the ones with 

the highest negative errors are the IPS-RCA4 and Nor-HIRH models. The GCM-RCM combinations with the smallest IQR of 

errors are those using CCLM RCMs. The model with the smallest bias is Had-RACM.  290 

The Taylor diagram in Fig. 8 confirms that the best combinations are those with CCLM RCMs. In particular, the best one 

seems ECE-CCLM. However, when used in combination with CM5, the corresponding model provides poor performance. 

The worst performing models are ECE-HIRH and Nor-HIRH. The diagram confirms that precipitation is modelled with less 

accuracy than temperature, as correlations are lower (<0.8).  

The application of the ranking criteria (see Fig. 9) suggests Had-RACM and ECE-CCLM as the best combinations for the 295 

entire area and most of the zones. Also, CM5-ALAD works well for the whole area and almost all the zones, except for Zone 

4, where it ranks the 11th. IPS-WRF, IPS-RCA4, Nor-HIR, and CM5-RCA4 are the worst models. 

4.2.2 Seasonal variability 

The seasonal variability analysis carried out on precipitation shows (Fig. 10) a lower error dispersion in the wet seasons (i.e., 

autumn and winter) with respect to summer. In summer, several models show broader IQR, such as all the CM5 models and 300 

IPS-WRF, with the latter showing the largest median error.  On the one hand, these outcomes depend on the poor performance 

of some models in reproducing the seasonal cycle, and on the other hand, are due to the fact that in the dry season where 

rainfall is normally low, large errors may result even though the departure from the observed mean is relatively small. These 

results are consistent with those obtained by Giorgi and Lionello (2008) in a subdomain of the Mediterranean region and by 

Mascaro et al. (2018) for the Sardinia region. 305 

The Taylor diagrams in Fig. 11 highlight that NOR-HIRH and ECE-HIRH are the worst models for all the seasons but summer, 

where the IPS-WRF is the worst-performing.  

These indications are confirmed by the ranking results in Fig. 12. Concerning the best models, the following CMs perform the 

best in their respective seasons: ECE-RACMr12 in winter (DJF), ECE-CCLM in spring (MAM), MPI-REMOr2 in summer 

(JJA), MPI-CCLM and Had-RACM in autumn (SON). It is worth highlighting that ECE-RACMr12 provides the best rank 310 
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also for Zone 2 in autumn; ECE-CCLM is the best performing also for Zone 6 in summer; MPI-CCLM provides the best 

performances also for Zone 1 in winter and Zone 4 in spring and Had-RACM is the best model for Zone 2 in spring. For 

summer precipitation, MPI-REMOr2 is the best performing CM also for Zones 1, 2, 3 and 4. As for the ranking of seasonal 

mean temperature, once again there is no uniform behaviour of the models between the different seasons and zones. 

4.3 Drought characteristics  315 

The models’ performance in reproducing historical drought characteristics was also tested. In particular, the following drought 

characteristics derived from the theory of runs were analysed: maximum duration (Lmax), maximum accumulated deficit (Dmax), 

and maximum intensity (Imax).  

Figures from 13 to 15 represent the boxplots of the errors related to maximum drought duration, accumulated deficit, and 

intensity, respectively. In particular, for drought duration, the errors were computed through Eq. (2) by simply replacing T 320 

with Lmax, whereas for maximum drought accumulated deficit and intensity, the percentage errors were calculated through Eq. 

(3), by replacing P first with Dmax and then with Imax. 

There is a slight tendency of some models to underestimate drought duration (Fig. 13). Overall, the errors span from -3 and +2 

years. The broadest IQR is associated with MPI-REMO, while some models, such as CM5-CCLM, CM5-ALAR, ECE-RACM 

and, Nor-HIRH seem equally reliable. 325 

The boxplots obtained for Dmax (Fig. 14), shows that the models may yield considerable errors, which can potentially be larger 

than those for annual precipitation, as the accumulated deficit, given by the sum of precipitation deficits on a time interval 

lasting several years, can be affected by multiple errors. For some models, the IQRs are not larger than 50%. The most reliable 

model is Had-CCLM, but comparable performances are given by models CM5-CCLM, CM5-ALAR and ECE-CCLM, while 

the least dispersed is MPI-CCLM (for this model, however, the median error is larger than others). The least reliable is IPS-330 

WRF, followed by CM5-RCA4 and MPI-REMOr2. In general, as it can be seen from the box-plots, this feature is 

underestimated. Concerning Imax, the results indicate Had-RACM as the best model and CM5-RCA4 as the worst, followed by 

IPS-WRF (Fig. 15). Errors for this feature are less scattered than for accumulated deficit, and there is a general tendency for 

Imax to be underestimated by models.  

In agreement with the other variables analysed, the models were also ranked according to their ability in reproducing observed 335 

drought maximum intensities (Fig. 16). The ranking is done concerning this feature only, as it merges drought accumulated 

deficit and duration of each drought event. As shown in Fig. 16, the best models for the whole study area are confirmed to be 

Had-RACM, ECE-RACM, CM5-ALAR, and CM5-CCLM. These models have the highest ranking also for almost all the 

zones, with the only exception of CM5-ALAR, which does not seem suitable for Zone 6 and ECE-RACM for Zone 3. Overall, 

the worst models are CM5-RCA4, IPS-WRF and, Nor-HIRH for all the zones.  340 

Generally speaking, the skills of CMs in reproducing drought characteristics and interannual variability of precipitation are 

significantly linked. Drought characteristics, derived through the application of theory of runs, are functions of the departure 

from the thresholds rather than of the modelled precipitation itself. In other words, although a CM could significantly 

https://doi.org/10.5194/nhess-2020-78
Preprint. Discussion started: 25 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 

12 

 

underestimate or overestimate annual precipitation values (i.e. the data in the boxplots in Fig. 7 may look loosely grouped and 

the medians very far from 0), still it could provide good performance in terms of drought characteristics simulation if it can 345 

reproduce time variability. It is interesting to observe that the distribution of the percentage error of drought intensity (Fig. 15) 

is, in general, less scattered than that related to the accumulated deficit (Fig. 14); therefore, one can conclude that a partial 

error compensation occurs when the modelled accumulated deficit is divided by the modelled duration. Despite the differences 

in the percentage errors, there is however a general agreement in the identification of the best and, mainly, the worst models, 

also confirmed by the ranking of the models in reproducing drought intensity (Fig. 16). 350 

5 Discussion 

Table 6 illustrates the best performing models according to the ranking approach for each of the considered variables over the 

whole area and the six homogeneous zones, respectively. In particular, the three best performing models are reported for the 

mean temperature and precipitation interannual variability and drought intensity, while only the best CM for each season is 

indicated for seasonal variability.  355 

It is worth underlining that the rankings are aimed to provide straightforward information about the relative accuracies of the 

models, e.g., for supporting the selection of a single or few models in a specific area, therefore, for the sake of simplicity, they 

provide reduced information based on cardinal numbering. However, the actual performance of each CM compared to the 

others can be highlighted by looking closer at the m values, which reflect and summarize the results provided by the box-plots 

and the Taylor diagrams. 360 

Two kinds of comparison are carried out in this section: 1) on the same variable, across different time scales; 2) on the same 

time scale, across different variables. Further discussion is provided about relative impacts of different GCMs and RCMs and, 

finally, an overall ranking is attempted aimed at providing a global evaluation of the CMs performance. 

5.1 Analyses across different time scales (interannual and seasonal) 

Concerning temperature, the intercomparison between the interannual and seasonal variability is rather straightforward. All 365 

the simulations are characterized by a more or less pronounced underestimation (Fig. 2), together with a usually high 

correlation with observations (Fig. 3 and 5), i.e. both the observed interannual and seasonal variability are well reproduced. 

This is somehow confirmed by the rankings, where the relative differences among the models’ performances are not very 

marked.  

Conversely, in the case of precipitation, the performances of the models change significantly with the time scale. The most 370 

interesting case with this variable is CM5-ALAD that, considering the total area, ranked 3rd with the annual precipitation, but 

provided low performances in most of the seasons (9th in MAM, 11th in DJF and 18th in JJA). Though CM5-ALAD can 

reproduce relatively well the annual amount of rainfall, it is not as much able to simulate the seasonal variability, therefore the 

good performance at the annual time scale is due to the counterbalancing effects of the errors in different seasons. This feature 
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of CM5-ALAD is amplified in several of the six zones, e.g., zone 2 (where it is ranked 4th with the mean annual value, but 14th 375 

in DJF and 18th in MAM and JJA) or zone 6 (1st with the mean annual value, but 13th on DJF and 18th on JJA). On the other 

hand, MPI-CCLM in the total area ranked 8th considering the annual precipitation but provided rather good results in single 

seasons (it is ranked 3rd on MAM and 1st on SON).  

However, considering the total area and the annual precipitation, the values of the error metric m leading to the rankings are 

not very different among the first 9 models, being the m value of the model ranked 9th (i.e., CM5-ALAR) only 37% higher 380 

than the best. The difference with respect to the best m value is lower than 50% in DJF for the first 7 models, in MAM for the 

first 5 models, in JJA for the first 6 models and in SON for the first 7 models. The models providing always (i.e., considering 

both the annual and the seasonal values) differences lower than 50% with respect to the best m value are Had-RACM, ECE-

CCLM and Had-CCLM.  

5.2 Analyses across different variables 385 

In terms of interannual variability, it’s worth observing that, while MPI models appear the most suitable for mean temperature 

regardless of the area of investigation, especially regarding those in combination with REMO and CCLM RCMs, this is not 

the case for precipitation, although both the boxplot and the Taylor diagram indicate some potential of the MPI-CCLM for 

precipitation (Fig. 7 and 8). The boxplots for both variables displayed a large spatial variability of the errors, suggesting the 

limited capacity of RCMs to properly capture spatial variations of both temperature and precipitation patterns. Regarding 390 

precipitation, a similar result was obtained by Mascaro et al. (2018) for the Sardinia region. To find a possible explanation, we 

decided to investigate possible relationships between the amount of the errors and the cells’ mean altitude. In particular, 

correlation analyses between the elevation and the mean and the standard deviation of the mean annual air temperature and 

precipitation errors were carried out. Nonetheless, results, here not shown for the sake of brevity, did not provide significant 

correlations. 395 

Given the methodology adopted for identifying droughts, based on the annual values of precipitation, it is not surprising that 

the drought intensity ranking fits quite well that of the annual precipitation. However, models’ performances in the drought 

intensity ranking are closer each other: the first 12 models show differences with respect to the best m value (provided, once 

more, by Had-RACM) lower or equal to 50%, while only 5 models (IPS-RCA4, Nor-HIRH, MPI-REMO, IPS-WRF and, 

especially, CM5-RCA4) show differences near to or higher than 100%. 400 

Turning to seasonal variability, some similarities between mean temperature and precipitation arise in spring, with the ECE-

CCLM model looking valuable for both variables. ECE models also perform well in winter but in combination with different 

RCMs (i.e. HIRH for temperature and RACM for precipitation). In summer, MPI-REMOr2 model is the best option for 

precipitation but works well also for mean temperature, mainly for Zones 5 and 6. In autumn, MPI-REMOr2 is once again the 

best performing model but for mean temperature only. Alternatively, MPI-CCLM looks valuable for both mean temperature 405 
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and precipitation during this season, as also confirmed by the Taylor diagrams (Fig. 5 and 11). Finally, the best models for 

drought intensity broadly recall those identified for annual precipitation, specifically for ECE-CCLM and Had-RACM. 

5.3 Impact of GCM and RCM choice and different realizations  

Overall, no GCM prevails on the others because the RCMs deeply affect the final results. For example, concerning annual 

precipitation, the simulations relying on the Had GCM provide two high-ranked models (i.e., Had-CCLM and HAD-RACM) 410 

and a low-ranked model (i.e., Had-RCA4). In the case of precipitation, some indications come only from the two less used 

GCMs, i.e. IPS (two models) and Nor (one model), which provide bad results.  

Concerning the most used RCMs, CCLM seems able to improve performances always with temperature (Fig. 4) and in most 

cases with precipitation (Fig. 9). Also, RACM usually provides high rankings with precipitation, while lower performances 

are found with temperature. The five occurrences of RCA4 very seldom provide high rankings with precipitation, as well as 415 

the two occurrences of HIRH. 

It is of some interest to analyse the behaviour of different realizations of the same CM, which provide insight into the effects 

of the variability of a multi-member GCM ensemble (von Trentini et al., 2019). In this study, two cases occur, i.e., ECE_RACM 

and MPI_REMO. Looking at all the box-plots and Taylor diagrams, the two versions of the models behave rather coherently. 

Nevertheless, because of the variability of the overall model ensemble, usually, they are not ranked in subsequent positions. 420 

E.g., considering drought intensity and the total area, ECE-RACM is ranked 2nd and ECE-RACMr12 7th, while MPI-REMO is 

ranked 17th and MPI-REMOr12 12th. This result highlights that, at least to a certain extent, the variability induced by different 

driving ensemble members is of the same order of the variability given by other GCM-RCM combinations. On the other hand, 

given the similar performances of the different realizations pointed out by the box-plots and Taylor diagrams, it is confirmed 

that rather slight differences in models’ performance can be found even for distances of 4-5 positions in the rankings. 425 

5.4 Overall ranking and comparison with literature 

For a final evaluation of the models, an overall ranking criterion was applied. This ranking takes into consideration both the 

skills of the considered GCM-RCMs models to replicate annual precipitation and temperature variability, as well as drought 

characteristics. As shown in Fig. 17, the models with the best overall performances, both in the whole case study area and in 

the six climatically homogeneous zones are those in combination with CCLM RCMs, with the significant exception of Had-430 

RACM, which is ranked 1st considering the total area. Generally, the worst models are Nor-HIRH, IPS-WRF, and CM5-RCA4. 

An attempt can be made to compare the results of our ranking exercise with similar studies. Such a comparison is here limited 

to the Euro-CORDEX climate models for which, indeed, only a few studies do exist. Perhaps the study from Kotlarski et al. 

(2014) allows the most interesting comparisons for our purposes, being focused on both precipitation and temperature at 

seasonal and yearly timescales, and covering all areas of Europe, with specific results for the Mediterranean area. Models here 435 

denoted as CCLM (CLMCOM-11 in the mentioned study) perform well in reproducing annual temperature and precipitation 

in both studies. Differences arise for precipitation in the MAM season, since CCLM models show poor performances according 
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to Kotlarski et al. (2014), in contrast to our findings. Mascaro et al. (2018), whose study is focused on the Sardinia region 

(Italy), also found that the Had-RACM and ECE-CCLM models perform well in reproducing annual precipitation, while there 

is no agreement on the CM5-ALAD model. At the seasonal level, ECE-RACMr12, MPI-REMOr2 and MPI-CCLM perform 440 

well in both studies in the seasons DJF, JJA, SON respectively, while, in contrast to our results, in the MAM season the ECE-

CCLM does not perform well. These differences in the ranking could be partially due to the different observational datasets 

used, which have found to play a key role in climate model evaluations (Kotlarski et al., 2017).  

6 Conclusions 

In the present study, we compared the skill of several EURO-CORDEX RCMs at 0.11° (~ 12.5 km) grid spatial resolution in 445 

reproducing the annual and seasonal temperature and precipitation regime, as well as drought patterns, observed in the period 

1971-2000 in a dense network of rain gauges in Sicily and Calabria regions (Southern Italy).  

The CMs are more capable to simulate both annual and seasonal mean air temperature than precipitation and drought 

characteristics, with high correlation values. There is a general agreement among the models to underestimate annual 

precipitation and mainly mean annual temperature. Most of the models show deficiencies in the simulation of seasonal 450 

precipitation, especially concerning summer values, requiring further investigation.  

Overall, our analyses illustrate that the best performing models depend on the specific property of the investigated variable, as 

well as the temporal and the spatial scale of interest. It provides a general overview of model performance without aiming at 

ultimately explaining the biases of individual models. We reserve to carry out detailed investigations in follow-up studies that 

will address specific aspects of model performance and investigate the causes leading to the model biases for possible bias 455 

correction. Results of this study reveal insight on RCMs performances in small-scale regions, which are often targeted by 

impact studies and have so far received less attention, and provide some guidance to select the best models about the variable 

and the area under investigation. This is a key issue before addressing projections changes in the evolution of extreme hydro-

meteorological events, such as drought characteristics (frequency, duration, and magnitude). 
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Figure 1. a) Study area (Calabria is the southernmost peninsula of Italy and Sicily is the neighbouring island) with the locations of the gauges 

of the high-density observational network and the CORDEX reference grid; b) the six homogeneous zones identified through PCA.   655 
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Figure 2. Box-plots representing the frequency distribution of RCMs errors in mean annual temperature for the whole study area.  
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Figure 3. Taylor diagram comparing models performances in reproducing the interannual variability of mean annual temperature for the 

whole study area. 
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 665 

  
Figure 4. RCMs ranking with respect to interannual variability of mean annual temperature, for the entire area and the climatically 

homogenous zones.   
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Figure 5. Taylor diagram comparing models performances in reproducing the seasonal variability of mean annual temperature for the 

whole study area.  
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  675 
Figure 6. RCMs ranking with respect to seasonal variability of mean annual temperature, for the entire area and the climatically 

homogenous zones.    
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Figure 7. As Fig. 2 but for annual precipitation.  680 
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Figure 8. As Fig. 3 but for annual precipitation.  
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Figure 9. As Fig. 4 but for annual precipitation. 690 
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Figure 10. Box-plots representing the frequency distribution of RCMs percentage errors in seasonal precipitation for the whole study area.  
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Figure 11. As Fig. 5 but for mean annual precipitation for Sicily and Calabria.   
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Figure 12. As Fig. 6 but for seasonal precipitation   
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Figure 13.  As Fig. 2 but maximum drought duration  
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Figure 14. Box-plots representing the frequency distribution of RCMs percentage errors in maximum drought accumulated 705 

deficit 
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Figure 15. As Fig. 14 but for maximum drought intensity. 
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Figure 16. Ranking of models in reproducing maximum drought intensity for the whole area and the six climatic zones  

 715 
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Figure 17. Overall Ranking  

 720 
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Table 1. Intercomparison studies of RCMs’ performances within the CORDEX framework 

References Models Variables  Region Main conclusions  

Schmidli et al. (2007) 6 statistical 

downscaling models 

(SDMs) and 3 RCMs  

Daily precipitation European Alps SDMs and RCMs tend to have similar biases but differ 

with respect to interannual variations, with SDMs 

strongly underestimate the magnitude of the year-to-

year variations, mainly in winter. RCMs indicate a 

strong trend toward drier conditions including longer 

periods of drought. The SDMs, on the other hand, 

show mostly non-significant or even opposite changes. 

Endris et al., (2013) 10 RCMs from 

CORDEX Africa 

domain 

Seasonal and annual precipitation  Eastern Africa 

and 3 sub-

regions 

RCMs reasonably simulate the main features of the 

precipitation climatology. However significant biases 

are detected in individual models depending on sub-

region and season. The ensemble mean has better 

agreement with observation than individual models. 
Kotlarski et al. (2014) 9 EURO-CORDEX 

RCMs 

Spatiotemporal patterns of the 

European climate 

Europe The analysis confirms the ability of RCMs to capture 

the basic features of the European climate. Seasonally 

and regionally averaged temperature biases are mostly 

smaller than 1.5 °C, while precipitation biases are 

typically located in the ±40% range. 

Meque and Abiodun (2015) 10 RCMs from 

CORDEX Africa 

domain 

Link between El Niño Southern 

Oscillation (ENSO) and Southern 

African droughts expressed by 

the  Standardized Precipitation 

and Evapotranspiration Index 

(SPEI) 

Southern Africa ARPEGE model shows the best simulation, while 

CRCM shows the worst.  

Mascaro et al. (2015) 6 RCMs driven by 10 

GCMs from 

CORDEX Africa 

domain 

Properties of the hydrological 

cycle 

Niger River 

basin (West 

Africa) 

Most RCMs overestimate (order of +10% to +400%, 

depending on model and subbasin) the mean annual 

difference between precipitation (P) and evaporation 

(E), 

Wu et al. (2016) 4 RCMs from RMIP 

Project and their 

regional multi-model 

ensemble, and their 

driving GCM 

ECHAM5 

Summer extreme precipitation  East Asia All models can adequately reproduce the spatial 

distribution of extremely heavy precipitation. 

However, they do not perform well in simulating 

summer consecutive dry days. The ensemble average 

of multi-RCMs substantially improve model capability 

to simulate summer precipitation in both total and 

extreme categories when compared to each individual 

RCM. 
Park et al. (2016) 5 RCMs form the 

CORDEX East Asia 

domain 

Climatology of summer extremes 

(seasonal maxima of daily mean 

temperature and precipitation) 

East Asia RCMs show systematic bias patterns in both seasonal 

means and extremes. The models simulate temperature 

means more accurately compared to extremes because 

of the higher spatial correlation, whereas precipitation 

extremes are simulated better than their means because 

of the higher spatial variability. 
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Table 1. Continue 

References Models Variables  Region Main conclusions 

     

Smiatek et al. (2016) 13 EURO-CORDEX 

RCMs 

mean temperature and 

precipitation, frequency 

distribution of precipitation 

intensity, maximum number of 

consecutive dry days 

Greater Alpine 

Region (GAR) 

Though the models reproduce spatial seasonal 

precipitation patterns, the seasonal mean temperature 

is underestimated (from -0.8 °C to -1.9 °C) and mean 

precipitation is overestimated (from +14.8% in 

summer to +41.5% in winter). Larger errors are 
found for further statistics and various GAR sub-

regions. 

Diasso and Abiodun (2017) 10 RCMs from 

CORDEX Africa 

domain 

Drought characteristics evaluated 

through 4 Principal Components 

of the SPEI 

West Africa Only two models (REMO and CNRM) reproduce all 

the four drought modes. REMO and WRF give the best 

simulation of the seasonal variation of the drought 

mode over the Sahel in March-May and June-August 

seasons, while CNRM gives the best simulation of 

seasonal variation in the drought pattern over the 

Savanna.  

Um et al. (2017) 4 RCMs from 

CORDEX East Asia 

domain, their 

ensemble mean and a 

driving GCM 

Drought characteristics based on 

the SPEI 

East Asia Drought severity diverges markedly among the RCMs. 

Estimates of drought spatial extent are generally 

accurate in wet regions but inaccurate in dry regions. 

In general, the spatial extents of the droughts diverge 

among the RCMs, and the models fail to accurately 

capture droughts with large spatial scales. 

Foley and Kelman (2018) 7 EURO-CORDEX 

RCMs and 5 driving 

GCMs  

Several precipitation indices 

(accumulated precipitation 

amount, mean daily precipitation 

amount, max 1-day and 5-day 

precipitation amounts, simple 

daily intensity, number of heavy 

and very heavy precipitation 

days)  

Scottish islands While no models perform skilfully across all the 

metrics studied, some models capture aspects of the 

precipitation climate at each location particularly well. 

Adeniyi and Dilau (2018) 10 RCMs from 

CORDEX Africa 

domain 

Precipitation, temperature and 

drought 

West Africa ARPEGE has the highest skill at Guinea Coast, while 

PRECIS is the most skilful over Savannah and RCA 

over the Sahel. 
Senatore et al. (2019) 8 RCMs from 

CORDEX South Asia 

domain 

Annual and seasonal precipitation 

and temperature 

Iran and 6 sub-

regions 

No model is significantly better than others for every 

season and zone. Some enhancements are obtained by 

a weighting approach to take into account useful 

information from every RCM in the sub-zones. More 

reliable models show a strong precipitation decrease. 

Di Virgilio et al. (2019) 6 RCMS from 

CORDEX Australasia 

domain 

Near-surface max and min 

temperature and precipitation at 

annual, seasonal, and daily time 

scales 

Australia All RCMs showed widespread, statistically significant 

cold biases in maximum temperature and 

overestimated precipitation, especially over 

Australia’s populous eastern seaboard. 

https://doi.org/10.5194/nhess-2020-78
Preprint. Discussion started: 25 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 

41 

 

Table 2. List of GCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX 

ensemble 725 

Model name Abbreviation Reference Institution  

CNRM-CERFACS-

CNRM-CM5 

CM5 Voldoire et al. (2013) Centre National de Recherches 

Météorologiques  

ICHEC-EC-EARTH 

 

ECE  

Hazeleger et al. (2010) 

Irish Centre for High-End Computing 

 

EC-Earth Consortium, Europe 

IPSL-IPSL-CM5A-MR IPS Dufresne et al. (82013) Institut Pierre Simon Laplace  

MOHC-HadGEM2-ES Had Collins et al. (2011) Met Office Hadley Centre 

 

MPI-M-MPI-ESM-LR MPI 

 

Giorgetta et al. (2013) Max‐Planck‐Institute für Meteorologie 

NCC-NorESM1-M Nor Bentsen et al. (2013), 

Iversen et al. (2013)  

Norwegian Earth System Model 
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Table 3. List of RCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX 

ensemble 

Model name Abbreviation Reference Institution  

CNRM-ALADIN53 ALAD Colin et al. (2010) 

  

Météo-France / Centre National de Recherches 

Météorologiques 

RMIB-UGent-ALARO-0 ALAR De Troch et al. (2013) Royal Meteorological Institute of Belgium and 

Ghent University 

CLMcom-CCLM4-8-17 

 

CCLM Baldauf et al. (2011), 

Rockel et al. (2008) 

 

Baldauf et al. (2011), 

Rockel et al. (2008) 

Climate Limited-area Modelling Community 

(CLM-Community) 

DMI-HIRHAM5 HIRH Christensen et al. (2007) Danish Meteorological Institute 

KNMI-RACMO22E RACM van Meijgaard et al. 

(2008) 

Royal Netherlands Meteorological Institute, De 

Bilt, The Netherlands 

SMHI-RCA4 RCA4 Strandberg et al. (2014) Swedish Meteorological and Hydrological 

Institute, Rossby Centre 

MPI-CSC-REMO2009 REMO Teichmann et al. (2013) Helmholtz-Zentrum Geesthacht, Climate 

Service Center, Max Planck Institute for 

Meteorology 

IPSL-INERIS-WRF331F WRF3 - Institut Pierre-Simon Laplace and French 

National Institute for Industrial Environment 

and Risks (Ineris) 
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Table 4. List and acronyms of climate models (GCM-RCM combinations) included at least once in the EURO-CORDEX 

ensemble. The asterisk * means that two versions of the GCM-RCM combination are available 

 CNRM-

CERFACS-

CNRM-CM5 

ICHEC-EC-

EARTH 

IPSL-IPSL-

CM5A-MR 

MOHC-

HadGEM2-ES 

MPI-M-MPI-

ESM-LR 

NCC-

NorESM1-M 

CNRM-

ALADIN53 

CM5-ALAD - - - - - 

RMIB-UGent-

ALARO-0 

CM5-ALAR - - - - - 

CLMcom-

CCLM4-8-17 

CM5-CCLM ECE-CCLM - Had-CCLM MPI-CCLM - 

DMI-

HIRHAM5 

- ECE-HIRH - - - Nor-HIRH 

KNMI-

RACMO22E 

- ECE-RACM* - Had-RACM - - 

SMHI-RCA4 CM5-RCA4 ECE-RCA4 IPS-RCA4 Had-RCA4 MPI-RCA4 - 

MPI-CSC-

REMO2009 

- - - - MPI-REMO* - 

IPSL-INERIS-

WRF331F 

- - IPS-WRF - - - 
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Table 5. Summary of the statistics involved in the ranking process. Statistics with subscript 0 refer to observed values. 

Property Statistics k Error Ek,m(j) 

Seasonal variability 
Seasonal mean |𝜇0(𝑋𝜏(𝑗)) − 𝜇𝑚(𝑋𝜏(𝑗))| 

Seasonal standard deviation |𝜎0(𝑋𝜏(𝑗)) − 𝜎𝑚 (𝑋𝜏(𝑗))| 

Interannual variability 
Annual mean |𝜇0(𝑋(𝑗)) − 𝜇𝑚(𝑋(𝑗))| 

Annual standard deviation  |𝜎0(𝑋(𝑗)) − 𝜎𝑚 (𝑋(𝑗))| 

Drought characteristics 

Maximum drought duration |𝐿𝑚𝑎𝑥,0(𝑗) – 𝐿𝑚𝑎𝑥,𝑚(𝑗)| 

Maximum drought accumulated deficit |𝐷𝑚𝑎𝑥,0(𝑗) – 𝐷𝑚𝑎𝑥,𝑚(𝑗)| 

Maximum drought intensity |𝐼max,0(𝑗) − 𝐼max,𝑚(𝑗)| 
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Table 6. Best performing RCMs according to the ranking at the annual and seasonal scale. 

 

 

 

Whole area Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

         

T interannual variability 

 MPI-REMO MPI-REMO MPI-CCLM IPS-RCA4 MPI-CCLM MPI-CCLM IPS-RCA4 

 MPI-CCLM Had-CCLM MPI-REMO MPI-CCLM MPI-REMO MPI-REMO MPI-REMO 

 Had-CCLM MPI-CCLM Had-CCLM Had-CCLM Had-CCLM Had-CCLM MPI-CCLM 

         

T seasonal variability 

DJF ECE-HIRH CM5-CCLM CM5-CCLM ECE-HIRH ECE-HIRH MPI-CCLM MPI-CCLM 

MAM ECE-CCLM ECE-CCLM MPI-REMOr2 ECE-CCLM MPI-REMOr2 ECE-CCLM ECE-CCLM 

JJA IPS-RCA4 IPS-RCA4 IPS-RAC4 Had-RCA4 IPS-RCA4 MPI-REMOr2 MPI-REMOr2 

SON MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 Had-CCLM MPI-REMOr2 MPI-REMOr-12 MPI-CCLM 

         

P interannual variability 

 Had-RACM Had-RACM ECE-RACM ECE-CCLM ECE-CCLM ECE-CCLM CM5-ALAD 

 ECE-CCLM CM5-CCLM Had-RACM Had-CCLM Had-RACM CM5-ALAD Had-RACM 

 CM5-ALAD CM5-ALAD CM5-ALAR Had-RACM Had-CCLM Had-RACM ECE-RACMr12 

         

P seasonal variability 

DJF ECE-RACMr12 MPI-CCLM ECE-RACMr12 ECE-RACM ECE-RACMr12 ECE-RACMr12 ECE-RACM 

MAM ECE-CCLM ECE-CCLM Had-RACM CM5-CCLM MPI-CCLM ECE-CCLM ECE-CCLM 

JJA MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 Had-CCLM ECE-CCLM 

SON MPI-CCLM MPI-CCLM ECE-RACMr12 IPS-WRF MPI-CCLM Had-RACM Had-RACM 

         

Drought intensity 

 ECE-CCLM Had-CCLM CM5-ALAR ECE-CCLM CM5-ALAR ECE-CCLM Had-CCLM 

 Had-CCLM ECE-RACMr12 Had-RACM MPI-CCLM ECE-CCLM ECE-RACMr12 CM5-CCLM 

 Had-RACM ECE-CCLM ECE-CCLM Had-CCLM MPI-REMO MPI-REMO Had-RACM 

 

 740 

https://doi.org/10.5194/nhess-2020-78
Preprint. Discussion started: 25 March 2020
c© Author(s) 2020. CC BY 4.0 License.


